http://dswarmsikhttkg7jgsoyfiqpj3ighupfrvuz5ri3lu5q2dlqyrpgk7ad.onion/notes/lsg.html
\(p\).
Therefore, \(q\). The sequent * for Examples 1.1 and 1.2: \(p \land \neg q \to r, \neg r, p \vdash q\) Example 1.4 Prove that \(p \land q, r \vdash q \land r\) is valid. (This is a Jaśkowski style proof ) Example 1.6 Prove that \((p \land q) \land r, s \land t \vdash q \land s\). 14.1.